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Review - Intro

Canonical factor model:

yt = βFt + et

Induces the convenient decomposition on the covariance matrix:

Σy = βΣf β′ + Σe

Where Σe is likely diagonal (or at least sparse)

And we can make any of the above three objects time-varying to
produce time-varying covariances
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Review - Literature

Classical models (Diebold and Nerlove, 1989, many others):

Σy
t = βΣf

tβ
′ + Σe

log(Σf
t ) = αf log(Σf

t−1) + uft

Simple extensions (Pitt and Shephard, 1999, many others):

Σy
t = βΣf

tβ
′ + Σe

t

log(Σf
t ) = αf log(Σf

t−1) + uft

log(σet,i ) = αe
i log(σet−1,i ) + uet,i
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Review - Literature

Factor for Volatility (Barigozzi and Hallin (2015), Herskovic, Kelly, et
al (2014), growing literature)

Σy
t = βΣf

tβ
′ + Σe

t

log(Σf
t ) = βf Vt + uft

log(σet,i ) = βei Vt + uet,i

Vt = βvVt−1 + uvt
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Review - Empirics

Fit factor model at high frequency using intraday returns
Record realized variance of factor and idiosyncratic error
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Conditional Mean Dynamics

”If we want to have any hope capturing conditional variance
dynamics, we need to be sure of the conditional mean dynamics first.”

Could the observed comovement between factor and idiosyncratic
volatilities be due to omitted conditional mean dynamics?
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Quadratic factor

If the true DGP is:

yt = β1ft + β2(f 2t − σ2ft ) + et

ft ∼ N(0, σ2f ,t)

Yet the estimated model is:

yt = β̄1ft + ēt

Then:

E[β̄1] = β1 + β2
Cov(ft , f

2
t )

V[ft ]
= β1 under symmetry (1)

ēt = β2(f 2t − σ2ft ) + et (2)

Vt [ēt ] = 2σ4ftβ2β
′
2 + Vt [et ] (3)

Even if Vt [et ] = c , Vt [ēt ] will be time-varying and comove with market
volatility!
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White’s Theorem and Cubic factor

White’s Theorem: Any nonlinear model can be well-approximated by a
time-varying parameter linear model.

Although the research is inconclusive, some work (including ours) show
that βs vary over time

Could the time-variation also be a result of ommited variables?
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Cubic Factor

Now let the DGP be:

yt = β1ft + β2(f 2t − σ2ft ) + β3f
3
t + et

and we fit a misspecified linear model with time-varying coefficients:

yt = β̄1,t ft + ēt , ēt ∼ N(0,Σt)

Then:

β̄1,t =
covt(yt , ft)

Vt [ft ]
= β1 + β3

covt(f
3
t , ft)

Vt [ft ]
= β1 + 3β3σ

2
ft

Time-varying βs with factor structure!

This is White’s Theorem in action, since the time-varying parameters pick
up the nonlinearities.
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Cubic Factor (Cont’d)

Looking at the residuals:

ēt = β2(f 2t − σ2ft ) + β3f
3
t − 3β3σ

2
ft ft + et (4)

Vt [ēt ] = 2σ4ftβ2β
′
2 + (9σ4f ,t − 3σ6f ,t)β3β

′
3 + Vt [et ] (5)

And once again, we get a factor structure on volatility, even if Vt [et ] is
actually constant!
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Leverage Effects

”Leverage Effects” are the phenomenon that there is general negative
correlation between an asset return and its (changes in) volatility

The story is that a price decrease results in a more leveraged position,
since the value of debt rises relative to that of equity
Black (1976) and Christie (1982)

”Risk Premia Effects” are the phenomenon that higher returns should
be positively correlated with risk

Pindyck (1984) and French, Schwert and Stambaugh (1987)

For a given stock return, rt , this corresponds to:

log

(
σt+1

σt

)
= α + λ0rt + εt+1,0

Where λ0 would be negative (leverage) or positive (risk premia).
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Leverage Effects

Duffee (1995) finds that in fact the above formula is misspecified, and
should be re-written as:

log(σt) = α1 + λ1rt + εt,1

log(σt+1) = α2 + λ2rt + εt+1,2

Where λ̂1 > λ̂2, which creates the perceived leverage effect.

He then estimates the model in a factor context and finds:

log(σf ,t) = λf ft + Φ(L)σf ,t + vm,t

log(σie,t) = λi ft + Φ(L)σie,tvi ,t (6)

that λf < 0 and λi > 0
Though again, there is no consensus about the sign of the coefficients.
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Leverage Effects

Can our omitted variable setup explain this puzzle?

In the case of a missing square term,
Let λ? = Cov(ft , σ

2
f ,t) 6= 0, so

E[β̄1] = β1 + λ̄β2 (7)

Then the error term is:

ēt = β2(ft − σf ,t)− λ̄β2ft + et (8)

Vt [ēt ] = g(λ̄, β2, . . . )σ
2
f ,t + others (9)

= ḡ(λ̄, β2, . . . )ft + others by eqn 6 (10)

Nonzero correlation between idiosyncratic variance and market returns!
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Data

Are there actually higher-order dynamics?

Fit fourth-order polynomial to daily DOW-10 returns with SPY as factor
from Jan 2007 - Sep 2014

Polynomial Order
2 3 4 R2 F-test

1 - - ** 0.008 5.492
2 - *** *** 0.043 29.02
3 - - ** 0.015 9.709
4 - *** - 0.013 8.228
5 *** - *** 0.092 65.795
6 *** - *** 0.016 10.412
7 * - * 0.002 1.272
8 *** * *** 0.078 55.178
9 - - ** 0.007 4.549

10 *** - *** 0.031 20.722
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Data

Fit fourth-order polynomial factor model intraday to DOW-10 with
observed SPY factor.

Extract residual volatility:

Screeplot
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Final Thoughts

At the end of the day, the units in idiosyncratic volatility are very
small.

From a forecasting perspective, are we better off just holding them
constant?

Regime switching with two regimes?
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Nonlinear Screeplot

Back
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